

Ceramic Textiles Technical Notebook

Table of Contents

	Page
Introduction	1
Health & Safety	2
Terminology	4
Nomenclature	5
Fiber Selection Guide	6
Weight Loss	
Shrinkage	14
Fibers	15
Roving, Plied Yarns, Served Roving & Chopped Fibers	18
Sewing Thread	22
Sewing Instructions	24
Fabric	
Warp and Fill Breaking Load at Room Temperature	29
Hot Face vs. Cold Face Temperature	30
Thermal Conductivity	35
Paper	36
Tape	37
Sleeving	38
Thermal Protection	39
Performance Test Results	40
Chemical Compatibility	40
Metal Compatibility	40
Chemical Resistance	40
Moisture Absorption	42
Jet Fuel and Hydraulic Fluid Compatibility	42
Hydrazine and Ammonia Compatibility	42
Electrical Insulation Resistance	
Radiation Resistance	45
Cryogenic Testing	46
Aerospace Properties	47

	Thermal Optical Properties	47
	NASA Nonmetallic Material Testing	47
	IR Absorbance and Transmittance	48
	Spectral Hemispherical Emittance	49
Heat C	Cleaning Instructions	50
Heat T	Freating Instructions	51

3M[™] Nextel[™] Continuous Filament Ceramic Oxide Fibers 312, 440, 550, 610, and 720

Introduction

3M[™] Nextel[™] Continuous Filament Ceramic Oxide Fibers 312, 440, 550, 610, and 720 represent a major advancement in refractory fiber technology. These metal oxide fibers can be readily converted into textiles which meet demanding performance requirements in high temperature operating environments. Fabrics, paper, tapes, sleevings and yarn are typical products.

Additionally, the fibers have low elongation and shrinkage at operating temperatures, which allow for a dimensionally stable product to be made. These novel fibers also offer good chemical resistance, low thermal conductivity, thermal shock resistance, low porosity and unique electrical properties.

Because the filaments are continuous and strong, ceramic oxide textiles can be produced without the aid of other fibers or wire inserts.

Industrial Fibers

Nextel Ceramic Fibers 312 and 440, when converted to fabrics, tapes, sleevings, and paper are used in the aerospace, industrial, automotive, electrical and petrochemical markets as heat shields, curtains, linings, insulation, blankets and seals. Nextel Flame Stopping Dot Paper, engineered with Nextel Fiber 312, is ideal in applications where both flame barrier properties and light weight are critical.

Nextel Ceramic Fiber 550 is used in the electronic market for both insulation and seals.

Composite Fibers

Nextel Ceramic Fibers 610 and 720 are used in ceramic and metal matrix composites. Nextel Ceramic Fiber 610 is noted for it's outstanding single filament tensile properties. Nextel Ceramic Fiber 720 finds applications in ceramic matrix composites because of it's high creep resistance.

Special Note: Throughout this notebook we have used data based on typical properties of the products. If you need to develop a specification, please consult a 3M Representative. Application data has been collected from a variety of sources and may be of use for special applications.

Health & Safety Bulletin 3M™ Nextel™ 312, 440, 550, 610 & 720

Introduction

3MTM NextelTM Ceramic Fibers are refractory aluminoborosilicate (312 & 440), aluminosilica (550 & 720), and alumina (610) fibers with diameters ranging from 7-13 microns. They are produced in continuous lengths. During manufacture, Nextel 312, 440, 550, 610, and 720 Ceramic Fibers are coated with organic sizings or finishes which serve as aids in textile processing. Nextel 312, 440, 550, 610, and 720 Ceramic Fibers pose no significant health risks under most conditions of use. Under certain conditions, however, Nextel 312, 440, 550, 610, and 720 Ceramic Fibers may cause health effects if not handled properly. The following information describes the nature of these potential hazards and gives recommended safe handling practices for minimizing the risks. Additional information is available in Material Safety Data Sheets (MSDS) and Product Toxicity Summary Sheets.

Fiber and Dust Inhalation

Although Nextel fibers are classified as ceramic fibers, they are manufactured in continuous lengths and have diameters (approximately 7 to 13 microns) which are not considered to be respirable by humans. Since they are not considered to be respirable, inhalation exposure to Nextel 312, 440, 550, 610, or 720 fibers is not expected to pose a carcinogenic risk to humans. They may, however, cause mechanical irritation of the nose and throat.

In certain operations, Nextel 312, 440, 550, 610, and 720 Ceramic Fibers may break to form a dust, particularly if the sizing has been removed or the fibers have been exposed to high temperatures. The potential for Nextel 312 Ceramic Fiber dust to cause biological effects was evaluated in an intratracheal instillation study in rats. Intratracheal instillation delivers test materials directly to the lower respiratory tract and thus bypasses the processes by which fibers and dust are normally filtered out in the upper airways when they are inhaled. In this study, Nextel 312 Ceramic Fiber dust caused lung inflammation with no evidence of more serious effects such as granulomas or fibrosis. A control group similarly exposed to quartz dust developed lung granulomas and fibrosis. From this study it was concluded that the potential for Nextel 312 Ceramic Fiber dust to cause pulmonary fibrosis or other significant lung injury is minimal.

There is currently no specific OSHA Permissible Exposure Limit (PEL) or ACGIH Threshold Limit Value (TLV) for refractory ceramic fibers. The Refractory Ceramic Fiber Coalition (RCFC) has suggested an exposure limit of 0.5 fibers/cc for those fibers <3 microns in diameter. The RCFC suggested exposure</p> limit is an organizational number rather than a regulatory number. However, since Nextel 312, 440, 550, 610, and 720 Ceramic Fibers are nonrespirable (fiber diameter of >3 microns), they are not covered by this suggested limit. Instead, Nextel 312, 440, 550, 610, and 720 Ceramic Fibers are covered by the OSHA PELs for "particulates not otherwise regulated" of 15 mg/m³ as total particulate and 5 mg/m³ as respirable particulate. In addition, these fibers are covered by the ACGIH TLVs for "particulates not otherwise classified" of 10 mg/m³ as inhalable (total) particulate and 3 mg/m³ as respirable particulate. Both values are 8-hour timeweighted averages. 3M recommends the ACGIH TLVs.

The EU directive 97/69/EC of December 5, 1997 is the European legal base for classification, packaging and labeling of certain man-made vitreous fibers. Laboratory studies have shown that certain man-made vitreous fibers have carcinogenic effects. Due to the fact that Nextel ceramic fibers do not meet the critical geometric dimensions for respirable fibers (note R in 97/96/EC) Nextel fibers do not have to be classified as dangerous substances according this directive.

Furthermore, the Nextel ceramic fiber diameter of 7-13 microns puts them outside the World Health Organization (WHO) definition of respirable. Fibers are defined as respirable by WHO convention if the length is greater than 5 microns and the diameter is less than 3 microns with a length to diameter ratio greater than 3:1.

Local exhaust ventilation and/or use of NIOSH approved dust mist respirators is recommended for operations where fibers or dust may become airborne. If nose or throat irritation occurs, move to fresh air.

Eye and Skin Contact

3M Nextel 312, 440, 550, 610, and 720 Ceramic Fibers can cause mechanical irritation of the eyes and skin similar to that caused by fiberglass. Safety glasses or

goggles, gloves and long sleeved clothing with tight fitting cuffs are recommended to minimize eye and skin contact. Contaminated clothing should be laundered each day. If eye irritation occurs, flush eyes with water. If skin irritation occurs, wash the affected area with soap and water and change to fresh clothing.

Heat Cleaning/Treatment

Heat cleaning Nextel 312, 440, 550, 610, & 720 Ceramic Fibers to remove the polymeric sizings and finishes or heat treatment of Nextel 312 Ceramic Fibers generates thermal decomposition products which can be hazardous if inhaled at concentrations exceeding their recommended exposure limits. Carbon monoxide and formic acid are the predominant decomposition products. By controlling carbon monoxide concentrations to the ACGIH Threshold Limit Value of 25 ppm (8 hr TWA), other decomposition products should also be adequately controlled. Control of carbon monoxide levels may be most effectively achieved through the use of exhaust ventilation, for example an exhaust enclosure or hood. The ventilation system should provide a minimum capture velocity of 150 ft /min (45,72 m/min) and should not be subject to disturbances produced by cross drafts. See the Nextel 312, 440, 550, 610, and 720 Ceramic Fiber Heat Cleaning/Heat Treating Procedure Bulletins for detailed instructions.

After Service Considerations

Analyses of Nextel 312 Ceramic Fibers, either as manufactured or after use, has shown that neither free silica nor the cristobalite form of silica is present. The silica in the fibers is present in the form of mullite, which is a stable mixture of alumina and silica. This differentiates Nextel 312 Ceramic Fibers from some other refractory ceramic fibers which when repeatedly heated to very high temperatures, >2012°F (>1100°C), may be partially converted to a form of crystalline silica.

Refer to "Fiber & Dust Inhalation" Section of this bulletin for precautions and respirator recommendations when using Nextel Ceramic Fibers.

3M[™] Nextel[™] Fiber Terminology

Chopped Fiber – Short lengths of fiber made by cutting continuous fiber roving. Chopped fibers are uniform in length and diameter unlike melt blown fibers.

Continuous Strand – A strand in which individual filament lengths approach the strand length.

Denier – Number of grams per 9000 meters.

End – A single strand, roving or yarn, incorporated in a product.

Fiber – Thread-like structure having a length at least 100 times its diameter, can be either definite short lengths or continuous.

Filament – A single fiber having extreme length.

Fill – Ends that run at right angles to the warp.

Finish – Material applied to fiber products to improve fiber-resin bonding, improve lubricity and high temperature abrasion, or stabilize a weave. Can contain a coupling agent.

Greige Goods – Loom state fabric; fabric that may contain sizing but no finish.

Heat Cleaning – Batch or continuous process to remove sizing.

Heat Treating – Batch or continuous process to remove sizing and change the crystal structure of the fiber improving its resistance to moisture and chemical attack.

Nonwoven Mat – An assembly of several layers of discontinuous fibers held together by mechanical interlocking in a random web.

Paper – A nonwoven made from an aqueous suspension of discontinuous fibers and binder(s).

Pick – A single strand, roving, or yarn incorporated in a product.

Plied Yarn – An assembly of two or more previously twisted yarns.

Roving – A loose assemblage of fibers in single strand, without twists.

Serving – Wrapping a yarn such as rayon around a roving or yarn for protection.

Singles – A yarn made from one or more strands twisted together but not plied. Examples: 1/0, 2/0, 4/0. Single strand construction is singles yarn made from one strand (1/0).

Sizing – Starch, oil, wax, or other suitable organic ingredient applied to a fiber strand to protect and aid handling. A sizing contains ingredients to provide lubricity and binding action. Unlike a finish, a sizing is usually removed before final product use.

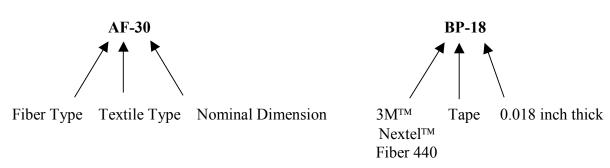
Strand – An untwisted primary filament bundle, can be either continuous filament or staple fiber (sliver).

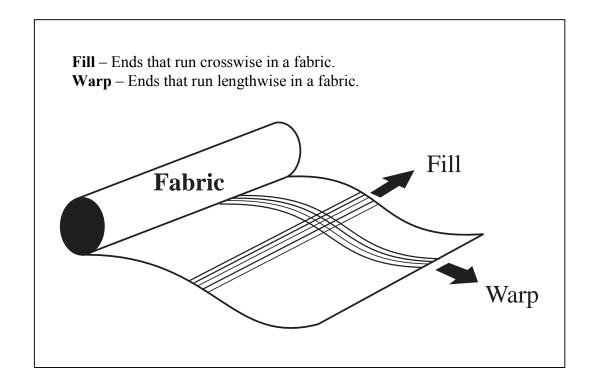
Tex – Number of grams per 1000 meters.

Twist – Twisting and/or plying strands or singles.

Warp – Ends that run lengthwise in a fabric.

Yarn – An assembly of one or more strands twisted together. Examples: 1/0, 4/0, 1/2, 2/2, 4/5.


Yield – Length of yarn per unit weight.


Nomenclature

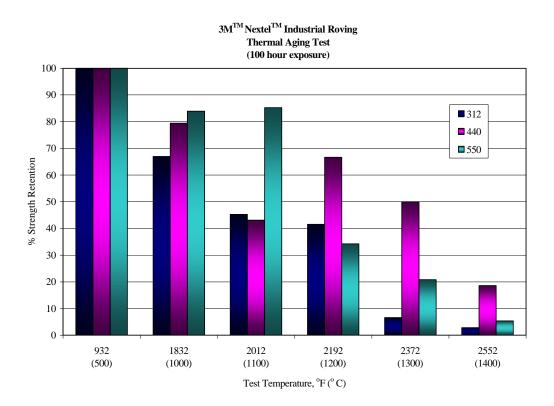
Fiber Type	Textile Type
A=312	F=Fabric
B=440	P=Tape
C=550	T=Thread
D=610	S=Sleeving
F=720	C=Chopped
	N=Nonwoven Paper
	M=Mat

Example:

Example:

Fiber Selection Guide

3M™ Nextel™ Industrial Fibers & 3M™ Nextel™ Composite Fibers


The family of 3M Nextel Fibers was developed to serve a variety of needs. 3M Nextel Fibers 312, 440, and 550 are designed for non-structural applications where their primary purpose is to insulate or to act as a flame barrier. 3M Nextel Fibers 610 and 720 are composite grade fibers designed for load bearing applications in metal, ceramic, and polymer matrices. To aid in the selection of the proper fiber for each of these different applications, the fibers are tested in a manner appropriate to their end use. The graphs that follow show the results of two different methods of testing fiber strength. In the thermal aging test, fiber break load is measured at room temperature after exposure at an elevated temperature for 100 hours. In the strength at temperature test, fiber break load and single filament tensile strength is determined while the fiber is held at temperature.

Two of the industrial fibers, 3M Nextel Ceramic Fibers 312 and 440, are made from Al₂O₃, SiO₂, and B₂O₃ at varying percentages. Because B₂O₃ is present, these compositions have both crystalline and glassy phases. The glassy phase helps the fiber retain strength after exposure to high temperature because it slows the growth of the crystalline phases that weaken the fiber. However, when the fiber is stressed at high temperature, the glassy phase weakens the fiber due to viscous flow much like a glass fiber. 3M Nextel Ceramic Fiber 550 does not contain B₂O₃ and therefore does not have a glassy phase. At exposure temperatures higher than 2192°F (1200°C), the strength of 3M Nextel Ceramic Fiber 550 is lower strength than 3M Nextel Ceramic Fiber 440 due to the formation of larger grained mullite. On the other hand, because 3M Nextel Ceramic Fiber 550 has no glassy phase it retains its strength better at temperature as is shown in the graph below where the roving is tested at temperature.

The composite grade fibers, 3M Nextel Ceramic Fibers 610 and 720, have more refined crystal structures based on α-Al₂O₃ and do not contain any glassy phases. This allows the fibers to retain their strength at higher temperatures. The at temperature strength testing (3M Nextel Composite Fibers, % Strength Retention at Temperature, Single Filament) shows the effect of adding additional components to the fiber. 3M Nextel Ceramic Fiber 610 is a fine grained single-phase composition of α -Al₂O₃. It has the highest strength at room temperature, thus making it well-suited for metal matrix composites. However, because it is essentially single phased, the strength rapidly decreases at higher temperatures due to grain growth (3M Nextel Ceramic Fiber 610 and 720 graphs of Strength Retention and Grain Size after 1000 hours Exposure). 3M Nextel Ceramic Fiber 720, which is α -Al₂O₃ with SiO₂ added (forming α -Al₂O₃ / mullite), has better strength retention at temperature due to reduced grain boundary sliding. This addition also helps to "pin" the grains and reduce grain growth when exposed to thermal aging as shown (3M Nextel Ceramic Fiber 610 and 720 graphs of Strength Retention and Grain Size after 1000 hours Exposure). Further confirmation of the effect of additional phases and removal of the glassy phase is shown in creep testing (3M Nextel Ceramic Fiber Creep Limit).

When selecting the fiber type for a particular application, it is important to consider all these factors. If the fiber/fabric will not have to support a load at temperature, the lower-cost industrial grade fibers may be appropriate. However, if the fiber will be load bearing at temperature, as in ceramic matrix composites, then one of the composite grade fibers would be a better choice. Other factors, such as corrosion,

chemical resistance, or atmospheric conditions may influence the final selection.

Outline of Test: Sample Number: 5

Samples: Nextel Roving 312, 1800 denier & Nextel Roving 440 & 550, 2000 denier

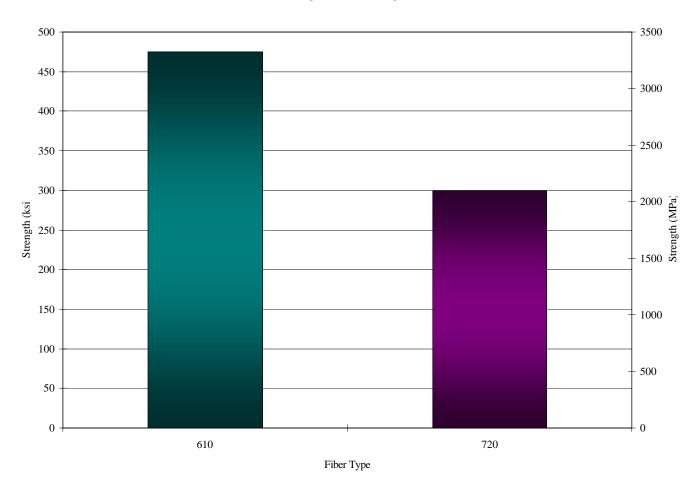
Gage Length: 2 inches (5.1 cm)

Extension Rate: 0.5"/min (1.3 cm/min)

Note: All samples were heat cleaned (sizing removed) at 932°F (500°C) which represents the 100% strength bar. All the samples were wetted with DI water before testing to aid in handling.

3MTM NextelTM Roving % Strength Retention 100 90 80 70 % Strength Retentio 60 50 40 -312 - 440 30 - 550 **-** 610 20 **-**720 10 0 2012 2192 HC 1472 1652 1832 2372 2552 (800)(900) (1000)(1100)(1200)(1300)(1400)Test Temperature, °F (°C)

Outline of Test: Sample Number: 10

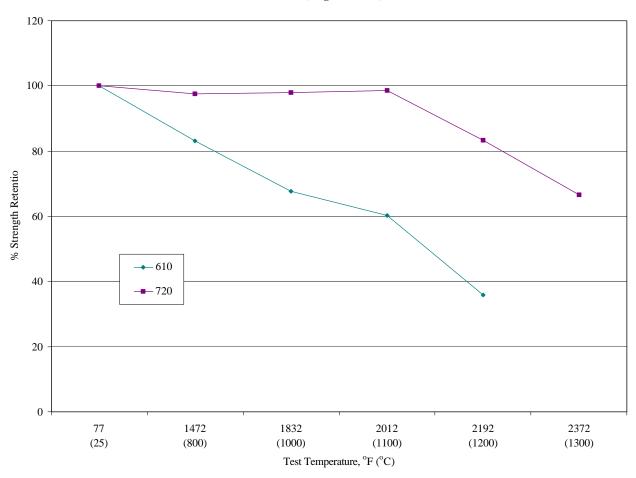

Samples: Nextel Roving, 1500 denier (400 filaments / bundle)

Total Gage Length: 10 inches (254 mm) Hot Zone Length: 1 inch (25,4 mm)

Extension Rate: 0.5inch/min (12.7 mm/min)

Note: Samples were held at temperature for approximately 1.5 minutes before testing.

$3M^{TM} Nextel^{TM} \ Composite \ Fibers \\ Single \ Filament \ Strength$



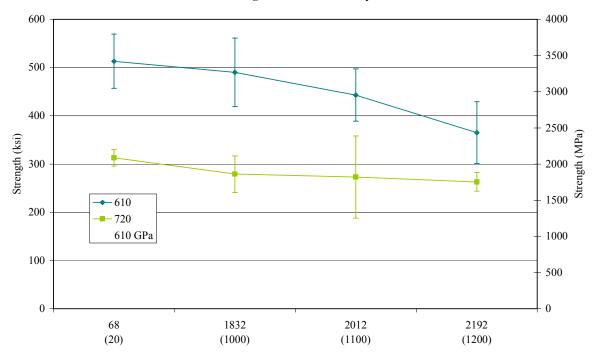
Outline of Test: Sample Number: 10

Gage Length: 1 inch (25,4 mm)

Extension Rate: 0.2 inch/min (5.1 mm/min)

3MTM NextelTM Composite Fibers % Strength Retention At Temperature (Single Filament)

Outline of Test: Sample Number: 10

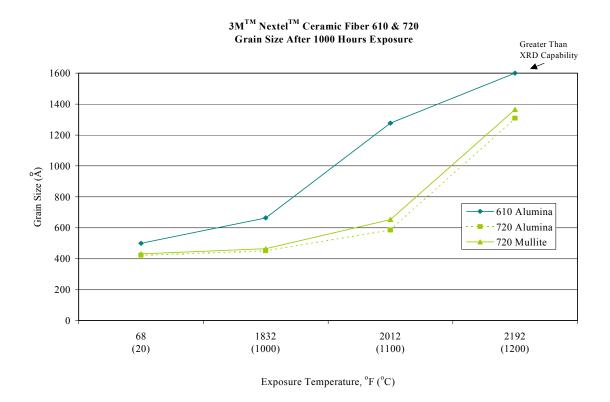

Total Gage Length: 10 inches (254 mm)

Crosshead Speed: 0.3 inches/min (0.76 mm/min)

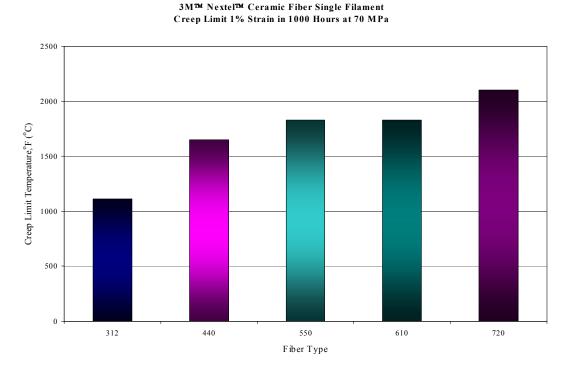
Hot Zone Length: 1 inch (25,4 mm)

Note: Samples were held at temperature for approximately 1.5 minutes before testing.

3MTM NextelTM 610 & 720 Single Filament Strength After 1000 Hour Exposure



Exposure Temperature, °F (°C)


Outline of Test: Sample Number: 10

Crosshead Speed: 0.02 inch/min (0.5 mm/min)

Gage Length: 1 inch (25,4 mm)

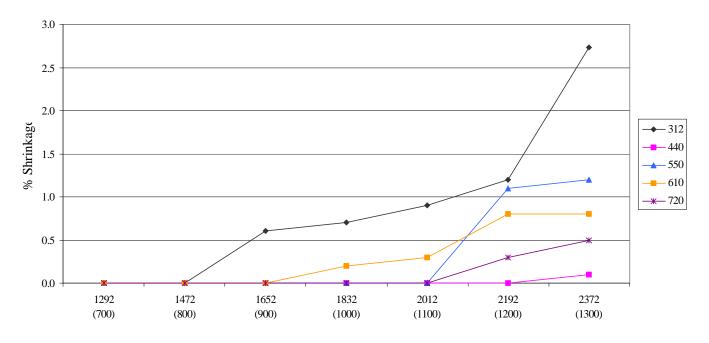
Grain size determined by X-ray diffraction.

Typical property data is for engineering use only. Contact a 3M representative before developing a specification. See Important Notice to Purchaser for details.

Fiber Weight Loss

Nextel™ Ceramic Fiber Roving

Roving samples were subjected to 2192°F (1200°C) for fifteen hours. Fibers were weighed before and after the fifteen hour exposure in order to determine weight loss. The only fiber having any appreciable weight loss was Nextel Ceramic Fiber 312. The fiber evolves B₂O₃ at temperatures greater than 2012°F (1100°C).


.

Fiber	Weight Loss
	%
312	2.5
440	0
550	0
610	0
720	0

Shrinkage

Roving samples were held at each temperature for fifteen hours. After that time they were measured for shrinkage. All fiber compositions showed less than three percent shrinkage after fifteen hours at 2372°F (1300°C). Fiber compositions other than Nextel™ Roving 312 showed shrinkage of less than 1.5% at these conditions.

% Shrinkage vs Temperature (15 hours)

Temperature, °F (°C)

3M[™] Nextel[™] Ceramic Fiber Typical Properties

3M[™] Nextel[™] Ceramic Fiber 312, 440, and 550

Property	Units	Nextel TM 312	Nextel TM 440	Nextel TM 550
Sizing Color	color	white	coral	blue
Chemical Composition	wt. %	62.5 Al ₂ O ₃	70 Al ₂ O ₃	73 Al ₂ O ₃
		24.5 SiO ₂	28 SiO ₂	27 SiO ₂
		13 B ₂ O ₃	$2 B_2 O_3$	
Melting Point	°F	3272	3272	3272
	(°C)	(1800)	(1800)	(1800)
Filament Diameter	μm	10 – 12	10 - 12	10 – 12
Denier / Nominal Filament Count	g/9000 m	600 / 400	700 / 400	1000 / 400
		900 / 400	1000 / 400	2000 / 750
		1800 / 750	2000 / 750	
Tex / Nominal Filament Count	g/1000 m	67 / 400	78 / 400	111 / 400
		100 / 400	111 / 400	222 / 750
		200 / 750	222 / 750	
Crystal Size	nm	< 500	< 500	< 500
Crystal Phase		Mullite + amorphous	γ-Al ₂ O ₃ +	γ -Al ₂ O ₃ +
		(or 100% amorphous)	Mullite +	amorphous SiO ₂
			amorphous Si02	
Density	g/cc	2.70	3.05	3.03
Refractive Index		1.568	1.614	1.602
Surface Area	m^2/g	< 0.2	< 0.2	<0.2
Filament Tensile Strength	MPa	1700	2000	2000
(25.4 mm gauge)	ksi	250	290	300
Filament Tensile Modulus	GPa	150	190	193
	msi	22	27	28
Thermal Expansion (100-1100°C)	ppm/°C	3	5.3	5.3
		(25-500°C)		
Dielectric Constant	(@ 9.375 GHz)	5.2	5.7	~5.8
Loss Tangent	(@ 9.375 GHz)	0.018	0.015	NA
Specific Heat @500°C (932°F)	cal/g/°C or	0.25	0.27	NA
	BTU/lb/°F			

3M[™] Nextel[™] Ceramic Fiber Typical Properties

3M™ Nextel™ Ceramic Fiber 610 and 720

Property	Units	Nextel TM 610	Nextel TM 720
Sizing Color	color	off-white	green
Chemical Composition	wt. %	>99 Al ₂ O ₃	85 Al ₂ O ₃
			15 SiO ₂
Melting Point	°F	3632	3272
	(°C)	(2000)	(1800)
Filament Diameter	μm	10 - 12	10 - 12
Denier / Nominal Filament Count	g/9000 m	1500/400	1500/400
		3000/750	3000/750
		10000/2550	
Tex / Nominal Filament Count	g/1000 m	167/400	167/400
		333/750	333/750
		1111/2550	
Crystal Size	nm	< 500	< 500
Crystal Phase		α -Al ₂ O ₃	α -Al ₂ O ₃ +
			Mullite
Density	g/cc	3.9	3.40
Refractive Index		1.74	1.67
Surface Area	m^2/g	<0.2	<0.2
Filament Tensile Strength	MPa	3100	2100
(25.4 mm gauge)	ksi	450	300
Filament Tensile Modulus	GPa	380	260
	msi	55	36
Thermal Expansion (100-1100°C)	ppm/°C	8.0	6.0
Dielectric Constant	(@ 9.375 GHz)	~9.0	~5.8
Loss Tangent	(@ 9.375 GHz)	NA	NA
Specific Heat @500°C (932°F)	cal/g/°C or	TBD	TBD
	BTU/lb/°F		

Sizing

Sizing is a processing aid applied to rovings and yarns to provide lubricity and binding action to protect the fibers and assist in handling.

299 and 399 Sizing

This 100% organic sizing, composed of polyvinyl alcohol (PVA) and additives (plasticizers, lubricants, etc.), is designed for easy removal by heat cleaning.

A pigment has been added to some of the sizing chemistry of some products to aid in identification. Both the pigment and the sizing will decompose upon heat cleaning. Standard product colors are:

Product	Color
312	White
440	Coral
550	Blue
610	Off-White
720	Green

Heat cleaning is used to remove all of the organic coatings from the surface of the 3MTM NextelTM Fibers. This is important in

applications where fabrics are going to be impregnated with resin for polymer composite applications. Heat cleaning is also used when Nextel Materials are coated with silicone rubber since sizing will inhibit the cure of the silicone. Heat cleaning is recommended when Nextel™ Ceramic Fabric is to be used as electrical insulation, (thermocouples, heaters, etc.), under reducing atmosphere or vacuum conditions. Under these conditions the 299/399 sizing decomposes to a conductive carbon layer and may cause electrical shorts.

See Electrical Insulation Resistance (p. 43) for further details.

222 Sizing

This sizing consists of a proprietary inorganic coating, which lubricates and protects the fiber during twisting and braiding. This produces a fiber that is tan in color. The 222 sizing has been found to be useful in electrical applications where it is undesirable to heat clean the product to remove organic coatings. Organic coatings decompose to conductive carbon in neutral or reducing atmospheres when heated above 932°F (500°C).

See Electrical Insulation Resistance (p. 43) for further details

3MTM NextelTM Roving and Yarn 312

3MTM NextelTM Roving 312 – Typical Properties

Roving	Nominal	Yield ± 10%		Breaking Load*	
	Filament Count	yds/lb	m/kg	lbs	kg
600 denier (67 tex)	400	7420	14950	6	2,7
900 denier (100 tex)	400	4950	9970	7	3,2
1200 denier (133 tex)	750	3720	7490	12	5,4
1800 denier (200 tex)	750	2480	4990	14	6,4
3600 denier (400 tex)	1375	1240	2500	24	10,9

3MTM NextelTM Served Roving 312 – Typical Properties

Roving	Nominal	Yield ± 10%		Breakin	g Load*
	Filament Count	yds/lb	m/kg	lbs	kg
600 denier (67 tex)	400	6300	12700	7	3,2
900 denier (100 tex)	400	4300	8670	9	4,1

3M[™] Nextel[™] Plied Yarn 312 – Typical Properties Color: White

JIVI INEX	(161 I III	eu 1 ai ii 312 –	1 ypicai 1 rope	i ties		Con	or. while
Yarn	Ends	Dian	neter	Yield :	± 10%	Breaking Loa	d*
		in	mm	yds/lb	m/kg	lbs	kg
600 denier	r (67 tex)	2.7 Twists/inch	(106 Twists/n	n)**			
1/2	2	0.007	0,18	3590	7240	14	6,4
900 denier	r (100 tex) 2.7 Twists/inc	ch (106 Twists/	m)**			
1/2	2	0.010	0,25	2390	4820	19	8,6
1/3	3	0.014	0,36	1580	3190	29	13,2
2/2	4	0.016	0,41	1180	2380	35	15,9
1/5	5	0.019	0,48	950	1920	43	19,5
2/3	6	0.024	0,61	780	1570	53	24,0
3/4	12	0.034	0,86	390	790	99	44,9
4/5	20	0.052	1,32	230	460	150	68,0
3/8	24	0.054	1,37	195	390	160	72,6
1800 deni	er (200 te	x) 2.7 Twists/ir	nch (106 Twists	s/m)**			
1/2	2	0.016	0,41	1190	2400	32	14,5
1/3	3	0.021	0,53	790	1590	45	20,4
1/4	4	0.026	0,66	590	1190	63	28,6
2/2	4	0.028	0,71	590	1190	57	25,9
2/3	6	0.034	0,86	390	790	89	40,4
2/5	10	0.050	1,27	230	460	150	68,0
2/6	12	0.054	1,37	195	390	145	65,8
			· · · · · · · · · · · · · · · · · · ·				

Note: Yields and breaking loads are based upon sized rovings and yarns. The allowable range in add-ons for sizing is 1.1 to 3.0% by weight. An inorganic sizing is available on any 900 denier or 1800 denier Nextel Plied Yarn 312.

Color: White

Color: White

^{*} Tested at room temperature.

^{**} The allowable tolerance on final twist is $\pm 30\%$. Other twist levels available.

3M[™] Nextel[™] Plied Yarn 312 with 222 Sizing – Typical Properties Color: Tan

Yarn	Ends	Dian	Diameter		Yield ± 10%		ad*
		in	mm	yds/lb	m/kg	lbs	kg
900 denier (100 tex) 2.7 Twists/inch (106 Twists/m)**							
1/4	4	0.015	0,38	1190	2400	27	12,2
1800 denie	er (200 te	x) 2.7 Twists/ir	nch (106 Twists	s/m)**			
1/2	2	0.016	0,41	1190	2400	21	9,5
3600 denier (400 tex) 2.7 Twists/inch (106 Twists/m)**							
2/5	10	0.073	1,85	120	240	165	74,8

3MTM NextelTM Roving and Yarn 440

3M[™] Nextel[™] Roving 440 – Typical Properties

DIVI I TOACCI ILOVING		Coton Conti			
Roving	Nominal	Yield ± 10%		Breakir	ıg Load*
	Filament Count	yds/lb	m/kg	lbs	kg
700 denier (78 tex)	400	6350	12800	7	3,2
1000 denier (111 tex)	400	4460	8990	9	4,1
2000 denier (222 tex)	750	2230	4490	14	6,4

3M[™] Nextel[™] Plied Yarn 440 – Typical Properties *Color: Coral*

			Typical Trope	1 4145		Coton Com			
Yarn	Ends	Dian	neter	Yield:	± 10%	Breaking	g Load*		
		in	mm	yds/lb	m/kg	lbs	kg		
700 denier (78 tex) 2.7 Twists/inch (106 Twists/m)**									
1/2	2	0.007	0,18	3000	6050	15	6,9		
1/4	4	0.013	0,33	1530	3080	27	12,2		
1000 denie	er (111 te	x) 2.7 Twists/ir	nch (106 Twists	s/m)**					
1/2	2	0.010	0,25	2150	4330	20	9,1		
2/2	4	0.017	0,43	1070	2160	35	15,9		
3/4	12	0.036	0,91	350	710	95	43,1		
2000 denie	er (222 te	x) 2.7 Twists/ir	nch (106 Twists	s/m)**					
1/2	2	0.016	0,41	1065	2150	34	15,4		
2/5	10	0.047	1,19	210	420	140	63,5		

Note: All yields are based upon sized rovings and yarns. The allowable range in add-ons for sizing is 1.1 to 3.0% by weight. An inorganic sizing is available on any 900 denier or 18000 denier Nextel Plied Yarn 312.

Color: Coral

^{*} Tested at room temperature.

^{**} The allowable tolerance on final twist is $\pm 30\%$. Other twist levels available.

3M™ Nextel™ Roving and Yarn 550

Nextel Roving 550 – Typical Properties Color: Blue								
Roving	Nominal Yield ± 10% Breaking Loa				g Load*			
	Filament Count	yds/lb	m/kg	lbs	kg			
1000 denier (111 tex)	400	4460	8990	9	4,1			
2000 denier (222 tex)	750	2230	4490	14	6,4			

3M[™] Nextel[™] Plied Yarn 550 – Typical Properties

	THE THORSE THOSE THE COURT TOPOLOGY						
Yarn	Ends	Diameter		Yield:	± 10%	Breaking Load*	
		in	mm	yds/lb m/kg		lbs	kg
1000 denier (111 tex) 2.7 Twists/inch (106 Twists/m)**							
1/2	2	0.010	0,25	2150	4330	21	9,5
2000 denier (222 tex) 2.7 Twists/inch (106 Twists/m)**							
1/2	2	0.017	0,43	1070	2160	36	16,3

3MTM NextelTM Roving and Yarn 610

3M TM Nextel TM Roving 610	3M™ Nextel™ Roving 610 – Typical Properties							
Roving	Nominal		± 10%	Breaking Load*				
	Filament Count	yds/lb	m/kg	lbs	kg			
1500 denier (167 tex)	400	2930	5910	11	5,0			
3000 denier (333 tex)	750	1490	3000	25	11,3			
10000 denier (1111 tex)***	2550	450	910	TBD****	TBD****			

3MTM NextelTM Plied Yarn 610 – Typical Properties

Yarn	Ends	Dian	Diameter		± 10%	Breaking Load*	
		in	mm	yds/lb m/kg lbs		kg	
1500 deni	er (167 te	x) 2.7 Twists/ir	nch (106 Twists	s/m)**			
1/2	2	0.010	0,25	1420	2860	20	9,1
2/2	2	0.017	0,43	710	1430	38	17,2

Note: All yields are based upon sized rovings and yarns. The allowable range in add-ons for sizing is 1.1 to 3.0% by weight. The allowable tolerance on final twist is \pm 30%.

Color: Blue

Color: Off-White

^{*} Tested at room temperature.

^{**} The allowable tolerance on final twist is $\pm 30\%$. Other twist levels available.

^{***} Experimental product.

^{****} TBD – To be determined.

3MTM NextelTM Roving 720

3M[™] Nextel[™] Roving 720 – Typical Properties

3M [™] Nextel [™] Roving 72	3M™ Nextel™ Roving 720 – Typical Properties						
Roving	Nominal Yield ± 10% Breaking Load				g Load*		
	Filament Count	yds/lb m/kg		lbs	kg		
1500 denier (167 tex)	400	2950	5950	6	2,7		
3000 denier (333 tex)**	750	1490	3000	10	4,5		

Note: All yields are based upon sized rovings and yarns. The allowable range in add-ons for sizing is 1.1 to 3.0% by weight. The allowable tolerance on final twist is \pm 30%.

3M™ Nextel™ Chopped Ceramic Fiber

Rovings may be chopped to specified length. The following table lists standard fibers and lengths. Other fibers and lengths may be chopped by special request.

Designation	Cut Length
AC-8	1/8, 1/4 and 1/2 inch
AC-11	(3,2, 6,4, 12,7 mm)

^{*} Tested at room temperature.

^{**} Experimental product.

3MTM NextelTM Sewing Thread

3M[™] Nextel[™] Sewing Threads are a combination of Nextel Ceramic Fibers and rayon fibers. The rayon fibers impart resiliency and abrasion resistance to the threads to improve sewability.

The rayon is heat fugitive, i.e., the fibers decompose at temperatures above approximately 572°F (300°C). The amount of rayon in the thread is about 5% by weight.

3MTM NextelTM Sewing Thread 312 – Typical Properties

		Style AT-2	1*	Style AT-30	
Diameter		0.019 inch	0,48 mm	0.028 inch	0,71 mm
Approximate Yield		1570 yd/lb	3160 m/kg	810 yd/lb	1630 m/kg
Breaking Strength	With Sizing	27 lb	12,2 kg	47 lb	21,3 kg
	Heat Cleaned	10 lb	4,5 kg	15 lb	6,8 kg
Knot Strength	With Sizing	5 lb	2,3 kg	14 lb	6,4 kg
	Heat Cleaned	3 lb	1,4 kg	8 lb	3,6 kg
Seam Strength	With Sizing	40 lb/in	7,1 kg/cm	TBD	TBD
	Heat Cleaned	18 lb/in	3,2 kg/cm		

3M[™] Nextel[™] Sewing Thread 440 – Typical Properties

		St	yle BT-30)
Diameter		0.	029 inch	0,74 mm
Approximate Yield		71	0 yd/lb	1430 m/kg
Breaking Strength	With Sizing		44 lb	20,0 kg
	Heat Cleaned		25 lb	11,3 kg
Knot Strength	With Sizing		6 lb	2,7 kg
-	Heat Cleaned		6 lb	2,7 kg
Seam Strength	With Sizing		TBD	TBD
-	Heat Cleaned			

Test Methods:

- 1) Yield ASTM D578
- 2) Thread Diameter ASTM D578, Sec. 14 [except 3/8 inch diameter presser foot, 2 psi pressure].
- 3) Breaking Strength ASTM D2256
- 4) Knot Strength ASTM D2256
- 5) Seam Strength 4 inch sample width, 4.5 stitches per inch, Type 301 lockstitch; 0.2 inch/minute crosshead rate; 2.5 inch jaw separation

^{*}Non-standard item; available by special order.

3MTM Sewing Thread

3M Sewing Threads are manufactured from high temperature continuous glass fiber. Laboratory testing has shown the product to maintain strength at temperatures up to 1400°F (760°C). The sewing thread is coated with PTFE to improve sewability. This coating

decomposes at elevated temperatures. 3M Sewing Threads, Style GT, can be used on most shuttle bobbin and rotary hook industrial sewing machines which have the capability of handling large threads of 0.023 inch (0,058 cm) diameter.

3MTM Sewing Thread – Typical Properties

			Style GT-15		23
Diameter		0.017 in	0,43 mm	0.022 in	0,56 mm
Approximate		2080 yd/lb	4190 m/kg	1260	2540 m/kg
Yield				yd/lb	
Breaking Strength	With Sizing	30 lb	14,0 kg	47 lb	21,3 kg
	Heat Cleaned	16 lb	7,3 kg	27 lb	12,2 kg
Knot Strength	With Sizing	12 lb	5,4 kg	19 lb	8,6 kg
	Heat Cleaned	8 lb	3,6 kg	14 lb	6,4 kg
Seam Strength	With Sizing	70 lb/in	12,5 kg/cm	117 lb/in	20,9 kg/cm
	Heat Cleaned	19 lb/in	3,4 kg/cm	26 lb/in	4,6 kg/cm

3M™ Nextel™ Sewing Thread and 3M™ Sewing Thread

Machine Sewing Instructions

3MTM NextelTM Sewing Threads 312 and 440 are machine sewable threads used for fabricating high temperature sewn parts. The following should assist you in machine setup.

Recommended Sewing Machines

Singer, 7 Class 31, 33, 34, 97-10 Adler, 7 Class 104, 105, 204, 205 Consew, 733R.

The above are all shuttle bobbin machines capable of handling very large threads without machine modification. Large rotary hook machines have been used to sew Nextel Materials, but they are not recommended. They require modification, and the rotary hook action can cause damage to the thread and reduce seam strengths.

Thread Lubrication

These Nextel Sewing Threads are precoated with an organic lubricant and need no soaking or further lubrication on the machine. Adding lubricants such as silicone, PTFE, or soap may damage the high temperature properties of the thread.

Note: The coating on Nextel Sewing Thread 312 and 440 may decompose to hazardous by-products when heated. Heat Processing to remove coatings must be done with local exhaust ventilation, e.g., a hood which provides a minimum capture velocity of 150 feet (45,72 m) per minute. See our Heat Cleaning Instructions and our Health and Safety Bulletin for more information.

Machine Set up and Operation

Needle, Size 21-30

A size 26 is the preferred needle size for Style BT-30. This size allows the thread to pass

through the needle eye and slot with a minimum of damage.

Thread Tension

Upper (needle side) tension should be measured after the tension device just before the take-up arm. For most fabric-to-fabric sewing this tension should be 0,4 to 0,7 kg. A setting of 0,6 kg is recommended as a starting point.

The lower (bobbin side) tension should be measured coming out of the thread plate. For most fabric-to-fabric sewing, this tension should be 0,4 to 0,7 kg. A setting of 0,4 kg is recommended as a starting point.

Preferred Stitch

Federal Standard Stitch Type 301 lock is recommended. Using this stitch type with an unbalanced bobbin tension, which allows the bobbin thread and stitch junction to remain on the bobbin side of the fabric surface, is suggested for fabric-to-fabric sewing. When quilting or sewing multiple layer parts, a buried stitch may be desired.

Stitch Length

3.7 to 7.0 stitches per inch (1.5 - 2.8 stiches per cm) is recommended. More stitches per inch may damage both thread and fabric and result in an excessive number of thread breaks.

Foot Pressure

The standard medium-range adjustment on the pressure foot assembly on 7-class machines for fabric-to-fabric sewing is usually sufficient. If the pressure is too low, slipping will occur and a short stitch length and abrasion to the fabric will be noticed. An overly high foot pressure will crush and break the fibers in the Nextel Fabric.

When sewing multiple layers or quilted parts, pressure on the foot may need adjusting depending on the part requirements.

Speed

If the above recommendations for machine, type, tensions, needle size and adjustments are followed, an operating speed of 550 stitches per minute should be attained. Slower speeds may be necessary if the thread is being sewn through many layers of fabric or thick blankets. Also, during initial machine setup, slower speeds will be required while adjusting tensions

Deburring

All nicks, burrs, and sharp edges must be removed from the thread guides, tension devices, spring arm, take-up arm, needle guide, needle eye, throat plate, feed dog and hook. Any of these parts which show a worn groove must be replaced. Emery cord and emery paper may be used for this work.

3MÔ NextelÔ Woven Ceramic Fabrics

Woven ceramic fabrics and woven industrial fabrics from 3M allow engineers and designers with high temperature applications to create new, imaginative solutions for previously impossible problems.

3MTM NextelTM Woven Ceramic Fabrics are designed to meet the toughest thermal, mechanical and electrical performance requirements. Nextel Woven Ceramic Fabrics outperform the useful limits of other high temperature textiles such as aramids, carbon, glass or quartz. Nextel Woven Ceramic

Fabrics are engineered to perform at continuous temperatures up to 2200°F (1204°C).

When used in industrial furnaces, Nextel Woven Ceramic Fabrics can serve as thermal barriers to separate different temperature zones or the fabrics can serve to prevent particulate shedding.

Some typical applications of Nextel Woven Ceramic Fabrics are as follows:

Application			Fabric		
	3N	1Ô Next	tel Ô Wo	ven Fab	ric
	312	440	550	610	720
Aerospace					
Radomes	✓	✓			
Thermal shields	✓	✓			
Micrometeorite debris shields	✓				
Ceramic-matrix composites			✓	✓	✓
Metal-matrix composites				✓	
Polymer-matrix composites	✓			✓	✓
Automotive	✓				
Electronic					
Diffusion furnaces			✓		
Industrial					
Furnace linings Galvanized steel furnaces					
Porcelain furnaces	✓	✓			
Furnace zone dividers	✓	✓			
Door seals	✓	✓		✓	
Tube seals	✓	✓			
Gaskets	✓	✓			
Expansion joints	✓				

3MTM NextelTM Woven Fabric 312 - Typical Properties

Style	Weight	Available Width	Thickness	Thread	l Count	Yarn Type	Air Permeability	Weave	Breaking without	Strength Sizing*
	(Sized)	.,, = 52.5=	(Sized)	Warp	Fill	- 3 P	w/o Sizing		Warp	Fill
	oz/yd² (g/m²)	inch (m)	inch (mm)	per inch (cm)	per inch (cm)		ft ³ /min/ft ² (l/min/dm ²)		lb/inch (kg/cm)	lb/inch (kg/cm)
Industi		()	()	(0222)	(322)		(4,,		(B ,)	()
AF-10	8.6	38	0.015	46	46	600d	15	5 harness	115	140
	(292)	(0,97)	(0,38)	(18)	(18)	served roving	(46)	satin	(20)	(25)
AF-11	7.6	38	0.010	24	23	1200d	40	Plain	120	135
	(258)	(0,97)	(0,25)	(9)	(9)	roving	(122)		(21)	(24)
AF-12	8.1	58	0.013	25	25	1200d	15	5 harness	130	150
	(275)	(1,47)	(0,33)	(10)	(10)	roving	(46)	satin	(23)	(27)
AF-14	9.0	38	0.014	20	17	900d	30	Plain	150	135
	(305)	(0,97)	(0,36)	(8)	(7)	1/2	(91)		(27)	(24)
AF-20	13.4	36	0.020	30	26	1800d	15	5 harness	170	150
	(454)	(0,91)	(0,51)	(12)	(10)	roving	(46)	satin	(30)	(27)
AF-30	17.6	36	0.030	19	18	1800d	50	Crowfoot	200	180
	(597)	(0,91)	(0,76)	(7)	(7)	1/2	(152)	satin	(36)	(32)
AF-40	24.0	36	0.037	32	20	1800d	35	5 harness	300	190
	(814)	(0,91)	(0,94)	(13)	(8)	1/2	(107)	satin	(54)	(34)
AF-62	29.5	4, 12, 30	0.054	40	20	1800d	100	Plain	260	190
	(1000)	(0,10; 0,30; 0,76)	(1,37)	(16)	(8)	1/2	(305)	double layer	(46)	(34)
Aerosp	ace									
AF-10	8.6	38	0.015	46	46	600d	75	5 harness	220	220
	(292)	(0,97)	(0,38)	(18)	(18)	served roving	(229)	satin	(39)	(39)
AF-10	7.2	38	0.010	46	46	600d	15	5 harness	115	140
w/o sizing	(244)	(0,97)	(0,25)	(18)	(18)	served roving	(46)	satin	(20)	(25)
AF-11	7.6	38	0.010	24	23	1200d	75	Plain	140	140
	(258)	(0,97)	(0,25)	(9)	(9)	roving	(229)		(25)	(25)
AF-11	7.4	38	0.009	24	23	1200d	40	Plain	120	135
w/o sizing	(251)	(0,97)	(0,23)	(9)	(9)	roving	(122)		(21)	(24)
AF-12	8.1	58	0.013	25	25	1200d	100	5 harness	220	220
	(275)	(1,47)	(0,33)	(10)	(10)	roving	(305)	satin	(39)	(39)
AF-12 w/o	7.9	58	0.011	25	25	1200d	15	5 harness	130	150
sizing	(268)	(1,47)	(0,28)	(10)	(10)	roving	(46)	satin	(23)	(27)

^{*} Tested at room temperature.

3MÔ Nextel**Ô** Woven Fabrics 440 - Typical Properties

Style	Weight	Available	Thickness	Thread Count		Yarn	Air	Weave	Breaking Strength	
		Width				Type	Permeability		without Sizing*	
	(Sized)		(Sized)	Warp	Fill		w/o Sizing		Warp	Fill
	$\frac{\text{oz/yd}^2}{(\text{g/m}^2)}$	inch (m)	inch (mm)	per inch (cm)	per inch (cm)		ft ³ /min/ft ² (l/min/dm ²)		lb/inch (kg/cm)	lb/inch (kg/cm)
BF-20	14.9	36	0.020	30	26	2000d	15	5 harness	250	220
	(505)	(0,91)	(0,51)	(12)	(10)	roving	(46)	satin	(45)	(39)
BF-30	20.4	36	0.030	21	20	2000d	35	Crowfoot	290	260
	(692)	(0,91)	(0,76)	(8)	(8)	1/2	(107)	satin	(52)	(46)
BF-40	26.4	36	0.038	32	20	2000d	35	5 harness	340	260
	(895)	(0,91)	(0,97)	(13)	(8)	1/2	(107)	satin	(61)	(46)

3M**Ô** Nextel**Ô** Woven Fabric 550 - Typical Properties

Style	Weight	Available	Thickness	Thread Count		Yarn	Air	Weave	Breaking Strength		
		Width				Type	Permeability		without Sizing*		
	(Sized)		(Sized)	Warp	Fill		w/o Sizing		Warp	Fill	
				per	per						
	oz/yd^2	inch	inch	inch	inch		ft ³ /min/ft ²		lb/inch	lb/inch	
	(g/m^2)	(m)	(mm)	(cm)	(cm)		(l/min/dm ²)		(kg/cm)	(kg/cm)	
CF-40	27.6	36	0.037	32	20	2000d	35	5 harness	340	260	
	(936)	(0,91)	(0,94)	(13)	(8)	1/2	(107)	satin	(61)	(46)	

3MÔ NextelÔ Woven Fabrics 610 and 720 - Typical Properties

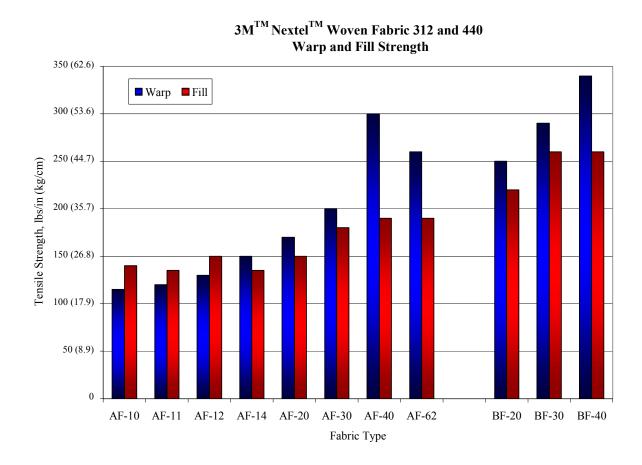
Style	Weight	Available Width	Thickness	Thread Count		Yarn Type	Air Permeability	Weave	Breaking Strength without Sizing*	
	(Sized)		(Sized)	Warp	Fill		w/o Sizing		Warp	Fill
	$\frac{\text{oz/yd}^2}{(\text{g/m}^2)}$	inch (m)	inch (mm)	per inch (cm)	per inch (cm)		ft ³ /min/ft ² (l/min/dm ²)		lb/inch (kg/cm)	lb/inch (kg/cm)
610	11.0	36	0.011	27.5	27.5	1500d	20	8 harness	230	260
DF-11	(373)	(0,91)	(0,28)	(11)	(11)	roving	(61)	satin	(41)	(46)
610	19.3	36	.019	23.5	23.5	3000d	13	8 harness	300	260
DF-19	(654)	(0,91)	(0,48)	(9)	(9)	roving	(40)	satin	(54)	(46)
720	11.2	36	0.013	27.5	27.5	1500d	20	8 harness	160	160
XN-513	(380)	(0,91)	(0,33)	(11)	(11)	roving	(61)	satin	(29)	(29)
720	18.8	36	0.022	23.5	23.5	3000d	30	8 harness	180	180
XN-625	(637)	(0,91)	(0,56)	(9)	(9)	roving	(91)	satin	(32)	(32)

^{*} Tested at room temperature.

Warp and Fill Breaking Load at Room Temperature

3M™ Nextel™ Woven Fabrics 312 and 440

Warp and fill breaking loads were measured at room temperature using the following procedure, based upon ASTM D-5035:


Fabric samples were cut into 1.5 inch x 6 inch (3.81 cm x 15.24 cm) strips in the warp and fill directions, respectively. Strips were placed in a 1472°F (800°C) oven for one hour to remove the sizing.

Edges were unraveled to 1 inch (2.54 cm). Masking tape was placed at each end with 3 inches (7,62 cm) test area exposed between taped areas.

The tensile tester was set up with a 3 inch (7.62 cm) gauge length and a crosshead speed of 0.5 inch (1.27 cm) per minute.

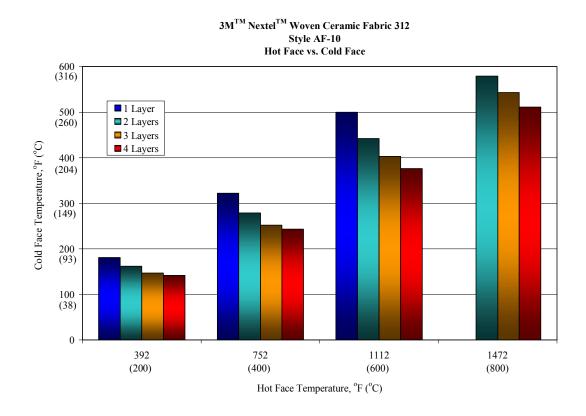
Fabric was placed into the jaws fitted with 1 inch (2.54 cm) pads. Air pressure was set at 60-80 psi (4.14 x $10^5 - 5.51$ x 10^5 Pa).

Each sample was loaded until failure. Five samples of each fabric were tested at room temperature. The averages are shown below.

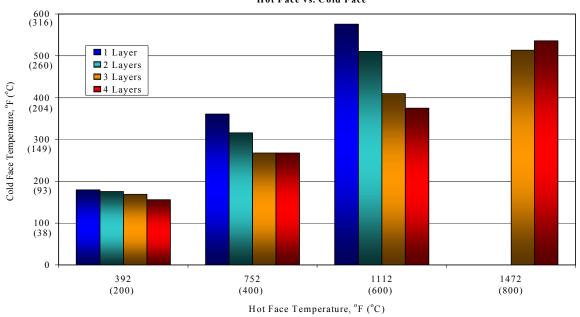
Hot Face vs. Cold Face Temperature

3MTM NextelTM Woven Fabrics 312 & 440

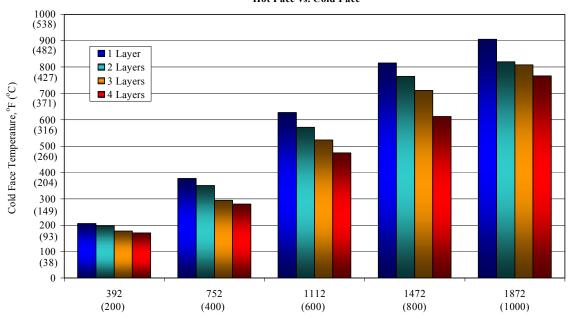
Hot face versus cold face temperature tests were conducted on samples of one through four layers of heat cleaned 3M Nextel Ceramic Fabrics 312 and 440.


The heat source was a small lab furnace capable of reaching a temperature of 1832°F (1000°C).

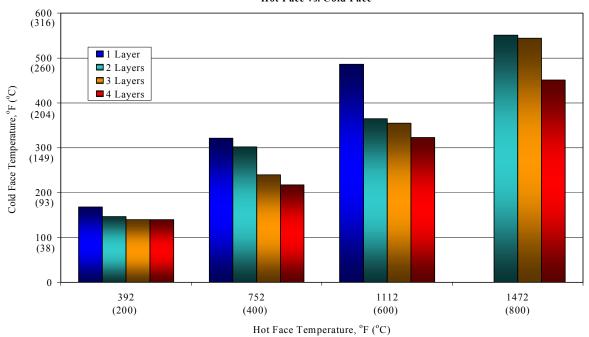
A 4 inch x 6 inch (10,16 cm x 15,24 cm) rectangular hole was cut in the top of the furnace. Fabric was cut so that the edges


overlapped the opening. A thermocouple was placed in the furnace for the measurement of the hot face temperature. The cold face thermocouple was placed lightly on the top of the fabric.

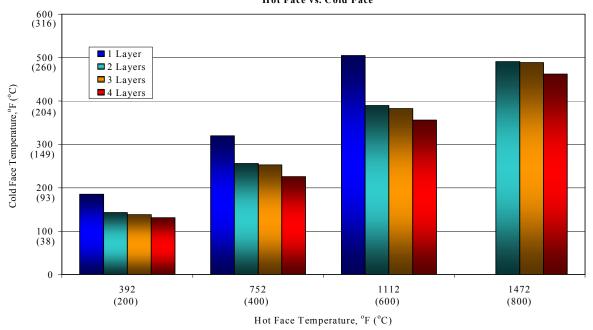
Temperature was recorded after the cold face temperature had reached a steady state.


Results of the test are found in the following graphs:

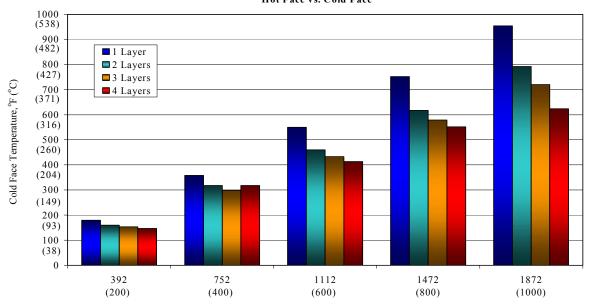
3M TM Nextel TM Woven Ceramic Fabric 312 Style AF-11 Hot Face vs. Cold Face



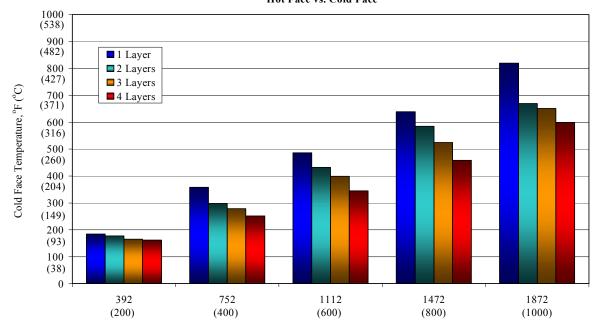
3MTM NextelTM Woven Ceramic Fabric 312 Style AF-14 Hot Face vs. Cold Face



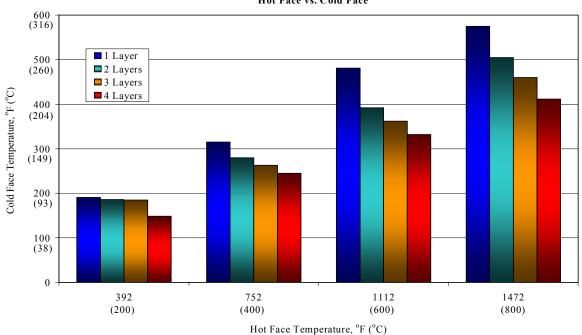
Hot Face Temperature, °F (°C)


3MTM NextelTM Woven Ceramic Fabric 312 Style AF-20 Hot Face vs. Cold Face

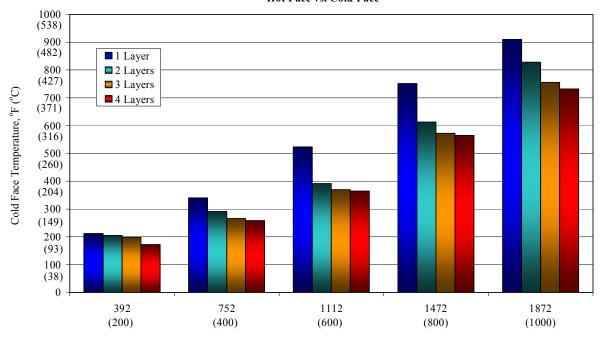
3MTM NextelTM Woven Ceramic Fabric 312 Style AF-30 Hot Face vs. Cold Face



3MTM NextelTM Woven Ceramic Fabric 312 Style AF-40 Hot Face vs. Cold Face


Hot Face Temperature, °F (°C)

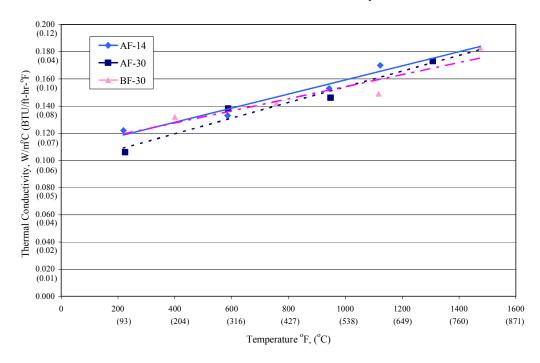
3MTM NextelTM Woven Ceramic Fabric 312 Style AF-62 Hot Face vs. Cold Face



Hot Face Temperature, °F (°C)

3MTM NextelTM Woven Ceramic Fabric 440 Style BF-20 Hot Face vs. Cold Face

3MTM NextelTM Woven Ceramic Fabric 440 Style BF-30 Hot Face vs. Cold Face


Hot Face Temperature, °F (°C)

Thermal Conductivity

3MTM NextelTM Woven Fabric 312 and 440

Fabrics made from both 3M Nextel Fiber 312 and 440 were tested for thermal conductivity. Results are reported graphically below. The tests were run in accordance with ASTM C-177-76, Steady State Heat Transmission Properties by means of the Guarded Hot Plate.

3MTM NextelTM Woven Fabric 312 and 440 Thermal Conductivity

3M[™] Nextel[™] Flame Stopping Dot Paper 312

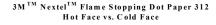
3M™ Nextel™ Flame Stopping Dot Paper 312 - Typical Properties**

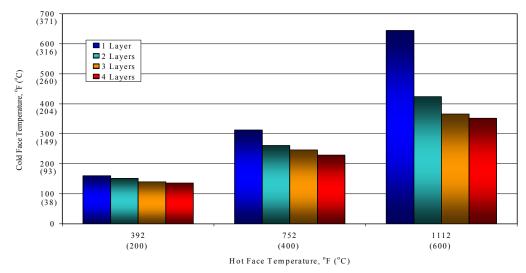
Style	Weight	Available Width	Thickness	Tensile Strength		
				Machine Direction	Cross Machine Direction	
	oz/yd^2 (g/m^2)	in (cm)	mils (mm)	lb/inch (kg/cm)	lb/inch (kg/cm)	
FSDP	2.2	60	17	14	9	
	(75)	(152)	(0,4)	(2,5)	(1,6)	

^{**}This product is manufactured from 3M[™] Nextel[™] Ceramic Fiber 312. See typical property information on page 15 for other properties.

Hot Face vs. Cold Face Temperature

Hot face versus cold face temperature tests were conducted on samples of one through four layers of 3M Nextel Flame Stopping Dot Paper 312.


The heat source was a small lab furnace capable of reaching a temperature of 1832°F (1000°C).


A 4 inch x 6 inch (10,16 cm x 15,24 cm) rectangular hole was cut in the top of the furnace. Fabric was cut so that the edges overlapped the opening. A thermocouple was placed in the

furnace for the measurement of the hot face temperature. The cold face thermocouple was placed lightly on the top of the fabric.

Temperature was recorded after the cold face temperature had reached a steady state.

Results of the test are found in the following graph:

3MTM NextelTM Woven and Braided Tape

3M[™] Nextel[™] Woven and Braided Tape 312 and 440 – Typical Properties

Style	Tape '	Width		ight zed)		kness (ed)		Strength Sizing*
	inch	cm	oz/yd	g/m	inch	mm	lbs/in	kg/cm
3M Nextel	Woven Tap	e 312, Style	AP-18					
	1.0	2,5	0.30	9,3	0.018	0,46	160	29
	1.5	3,8	0.45	14,0	0.018	0,46		
	2.0	5,1	0.60	18,6	0.018	0,46		
3M Nextel Woven Tape 440, Style BP-18***								
	1.0	2,5	0.33	10,2	0.019	0,48	180	32
	1.5	3,8	0.50	15,5	0.019	0,48		
	2.0	5,1	0.66	20,5	0.019	0,48		

Input yarn for Style AP-18 is 900 denier 3M Nextel Plied Yarn 312, 1/2, 1.5 z.

Input yarn for Style BP-18 is 1000 denier 3M Nextel Plied Yarn 440, 1/2, 1.5 z.

- * Test method ASTM D5035; tests conducted at room temperature.
- ** Tape is manufactured with an adhesive backing.
- *** Available only by special order.

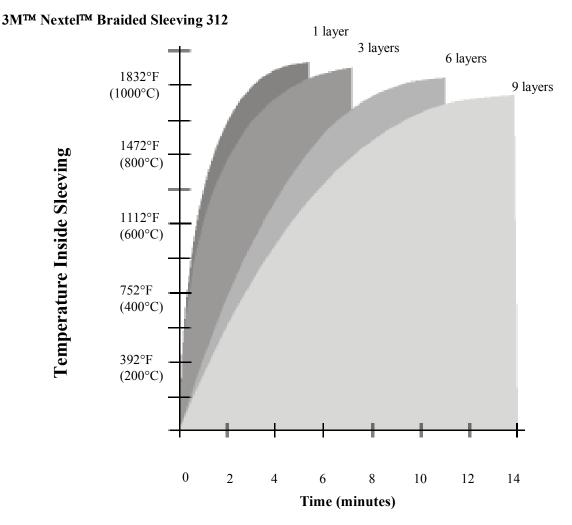
Notes:

When installing tape, a 50% overwrap by width is recommended.

For typical hot face/cold face temperature properties for AP-18, refer to the hot face/cold face chart for AF-14 using two layers (page 22).

3MTM NextelTM Braided Sleeving

3M[™] Nextel[™] Braided Sleeving – Typical Properties


Sleev	ing	W	all	Leng	th	Yield	l As	Picl	ks	Length*
Insid	_	Thicl	kness	per		Packa	iged,	pe	r	Coverage
Diamo	Diameter (sized)		Unit Weight		Roll Form		Unit Length		Factor	
		`	,	(size	d)	(size	ed)		S	
inch	mm	inch	mm	yards/lb	m/kg	lbs/100 ft	g/m	picks/inch	picks/cm	
3M Nex	tel Bra	aided Slo	eeving 3	12, Style A	S-40					
1/16	1,6	0.027	0.69	83	167	0.38	5,7	12	5	0.95
1/8	3,2	0.038	0,97	37	75	0.79	12	12	5	0.88
1/4	6,4	0.036	0,91	24	48	1.2	18	11.5	4,5	0.86
1/2	12,7	0.041	1,04	12	24	2.1	31	10.5	4	0.75
3/4	19,1	0.039	0,99	8.7	18	2.8	42	10	4	0.72
1	25,4	0.035	0,89	7.4	15	3.5	52	12	5	0.77
1 1/2**	38,1	0.033	0,84	5.3	11	4.6	68	12	5	0.74
2**	50,8	0.034	0,86	3.4	6,9	6.2	92	11	4	0.63
2 1/2**	63,5	0.037	0,94	3.1	6,2	7.6	113	8	3	0.70
3M Nex	tel Bra	nided Slo	eeving 3	12, Style A	S-50					
2	50,8	0.027	0,69	5.7	11,5	5.4	80	5.5	2	0.92
3M Nex	tel Bra	aided Slo	eeving 4	40, Style B	S-40					
1/16**	1,6	0.026	0.66	77	155	0.44	6,5	12	5	0.97
1/8	3,2	0.038	0,97	33	66	0.88	13	12	5	0.87
1/4	6,4	0.038	0,97	22	44	1.3	19	12	5	0.88
1/2	12,7	0.042	1,07	11	22	2.2	33	10	4	0.73
3/4**	19,1	0.042	1,07	7.8	16	3.3	49	10	4	0.78
1**	25,4	0.036	0,91	6.7	14	3.9	58	12	5	0.78
1 1/2**	38,1	0.034	0,86	4.8	9,7	5.1	76	12	5	0.74
2**	50,8	0.036	0,91	3.2	6,5	6.9	103	10.5	4	0.67
2 1/2**	63,5	0.038	0.97	2.7	5,4	8.3	124	7.5	3	0.68

Input yarn is 900 denier 3M Nextel Plied Yarn 312, 1/2, 2.7z. Input yarn is 1000 denier 3M Nextel Plied Yarn 440, 1/2, 2.7z.

^{*(}Package Length x Factor = Approximate Length Covered at Specific ID)
Approximate Length Covered at Specific Inside Diameter per 100 foot of Braided Sleeving.

^{**}Available only by special order.

Thermal Protection

Temperature inside sleeving at various times after insertion into 2000°F (1093°C) furnace for increasing layers of 3M Nextel Sleeving. Braid was 1 in (2,54 cm) in diameter and was 0.039 in (0,097 cm) thick.

The chart above compares the effect of increasing layers of 3M Nextel Braided Sleeving 312 in a heat soak exposure. It demonstrates that for short periods of time there is a substantial reduction in internal temperature using multiple layers of sleeving. However, as the length of time increases the internal temperature approaches equilibrium with the furnace temperature and the effect of multiple layers of sleeving is diminished. Specifically, samples containing 1, 3, 6, and 9 layers of sleeving respectively were fabricated over a 0.75 inch (1,91 cm) metal tube. The samples

were immersed in a furnace at 2000°F (1093°C) and the temperature inside the tube was measured. No cooling air was allowed to pass through the metal tube. The internal temperature with one layer of sleeving reaches equilibrium with the furnace temperature within 5-6 minutes while the internal temperature with nine layers reached only 1100 °F (593°C) in the same time period. As would be expected, constructions with 3 and 6 layers of sleeving had internal temperatures between those values.

Chemical Exposure Effects

Metal Compatibility

Issues of metal compatibility depend on several factors – temperature, atmosphere (oxidizing, reducing, neutral, and vacuum) and what other materials (fluxes, etc.) may be present.

Therefore, we recommend that sample fabrics be tested under the actual use conditions before proceeding with any component fabrication.

In general, under oxidizing conditions any metals that form low melting oxides will degrade the performance of 3M™ Nextel™ Fabrics. These include alkali metals such as sodium, potassium and lithium. Also included are low melting glass formers such as lead, phosphorous, tin and antimony. The transition metals of titanium, vanadium, manganese, nickel and copper degrade 3M Nextel Fibers under oxidizing high temperature conditions.

At temperatures above 2192°F (1200°C) in a hydrogen containing atmosphere with a very low dew point, the SiO₂ component in our

fibers can be reduced to SiO gas and degrade the fabric.

3M Nextel 440 Fibers are compatible with platinum metals at high temperatures and are used for flexible high temperature thermocouples.

Chemical Resistance

Short-term chemical exposure tests were performed on heat cleaned 3M Nextel Woven Tapes 312 and 440 and heat treated 3M Nextel Woven Tape 312 1 inch (2,54 cm) wide. Table 1 lists the strength retention results after chemical exposure and Table 2 lists the strength retention after rinsing the chemically exposed tapes with de-ionized water.

All samples were run on a tensile tester with cross-head speed of 0.5 inch/min (1,27 cm/min) using a 3 inch (7,61 cm) gauge length. All samples were loaded to failure (break).

Table 1. Percent Strength Retention After Exposure

Chemical	Concentration	3M™ Nexte	3M [™] Nextel [™] Tape 312	
		Heat Cleaned	Heat Treated	Heat Cleaned
Acids				
HNO ₃ Nitric Acid	10%	50%	95%	88%
HCl Hydrochloric Acid	10%	85%	98%	98%
H ₂ SO ₄ Sulfuric Acid	10%	38%	65%	72%
H ₃ PO ₄ Phosphoric Acid	10%	<1%	<1%	<1%
Bases				
KOH Potassium Hydroxide	10%	<1%	<1%	<1%
NaOH Sodium Hydroxide	10%	<1%	<1%	<1%
NH ₄ OH Ammonium Hydroxide	10%	78%	77%	96%
CaO Calcium Oxide	Saturated	48%	99%	94%

Test Method:

- 1. Soak individual samples for one hour in a 10% (by weight) chemical bath.
- 2. Dry samples at room temperature for at least 20 hours.
- 3. Heat samples at 1472°F (800°C) for 15 minutes.
- 4. Return to room temperature, load samples to failure.
- 5. Determine strength retention (average of five samples).

Table 2. Percent Strength Retention After Rinsing in H₂O

Chemical		Concentration	3M TM Nexte	3M TM Nextel TM Tape 440	
			Heat Cleaned	Heat Treated	Heat Cleaned
Acids					
H ₃ PO ₄	Phosphoric Acid	10%	82%	106%	100%
Bases					
KOH	Potassium Hydroxide	10%	77%	86%	98%
NaOH	Sodium Hydroxide	10%	61%	78%	84%

Test Method:

- 1. Soak samples for one hour in a 10% (by weight) chemical bath.
- 2. Dry samples at room temperature for at least 20 hours.
- 3. Soak samples in 150 ml of deionized water for 15 minutes.
- 4. Rinse sample in tap water.
- 5. Dry samples at 193°F (75°C) for 15 minutes.
- 6. Heat samples at 1472°F (800°C) for 15 minutes.
- 7. Return to room temperature, load samples to failure.
- 8. Determine strength retention (average of five samples).

Moisture Absorption

The 3M[™] Nextel[™] Ceramic Fibers 312, 440, 550, 610, and 720 absorb very little moisture due to their smooth, non-porous surface. Fibers exposed to 100% relative humidity for several hours at room temperature had 0.08% weight gain.

Jet Fuel and Hydraulic Fluid Compatibility

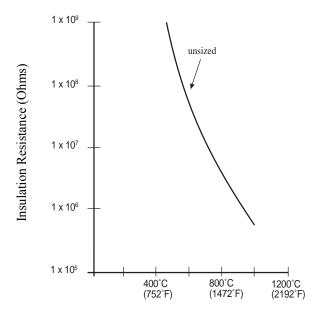
3M™ Nextel™ Woven Fabric 312 and 440 3M Nextel Woven Fabric 312 (AF-30) and 3M Nextel Woven Fabric 440 (BF-30) were heat cleaned, then immersed for thirty hours in JP-4 jet fuel or Chevron HyJet IV hydraulic fluid. After removal, the samples were dried at 230°F (110°C) for one hour and one inch tensile specimens were prepared.

Tensile Breaking Load (lb/in width)

Fabric	Heat Cleaned	JP-4	% Increase	HYJet IV	% Increase
AF-30	107	275	157%	287	168%
BF-30	235	334	42%	299	27%

The strength increases are due to residual organic material left on the surface of the fibers. If either fluid attacked the textiles one would expect a decrease in strength. 3M Nextel Woven Fabrics 312 and 440 show no degradation of the fiber strength after 30 hours in JP-4 jet fuel or HyJet IV hydraulic fluid.

Hydrazine and Ammonia Compatibility*


3M™ Nextel™ Woven Fabric 312 and 440 Compatibility with hydrazine and ammonia was also tested. 3M Nextel Woven Fabrics 312 and 440 were tested after exposure to both ammonia and hydrazine vapors for 48 hours per NHB 8606.1B. The 3M Nextel Fabrics did not exhibit any evidence of gross incompatibility with either fluid.

* Courtesy - NASA

Electrical Insulation Resistance

3M[™] Nextel[™] Braided Sleeving 312 (unsized)

Insulation resistance of 3M Nextel Braids on Type K thermocouple wire was measured as the temperature was increased from ambient to over 1832°F (1000°C). With 12 inch (30,5 cm) sections exposed to the test temperature, the remainder of the 18 inch (45,7 cm) thermocouple specimen extended through the oven wall and was connected to an ohmmeter. All wires were open-ended. A typical curve of insulation resistance as a function of temperature is shown in the figure below for thermocouple wires insulated with unsized varn. The values of insulation resistance will change depending on thickness, length of thermocouple wire and braid construction.

Temperature, °C (°F)

Note: Sized sleeving will have lower insulation resistance and should be heat cleaned in air. Heating in a non-oxidizing environment will produce conductive carbon residue.

222 Sizing

This sizing consists of a proprietary inorganic coating which lubricates and protects the fiber during twisting and braiding. This produces a fiber that is tan in color. The 222 sizing has been found to be useful in electrical applications where it is undesirable to heat clean the product to remove organic coatings. Organic coatings decompose to conductive carbon in neutral or reducing atmospheres when heated above 932°F (500°C).

Example: Standard Type K thermocouple wire was prepared by over-braiding with 3M Nextel Roving sized with 222 Sizing. One end of the braided thermocouple was cut with a wire cutter and inserted into a quartz protection tube while the opposite end was connected to an ohmmeter. (Since the Chromel and Alumel wires are not welded, the ohmmeter is measuring the insulation resistance between the two wires.) The quartz tube was then inserted into an electric furnace maintained at 1472°F (800°C) and the resistance was recorded as a function of time. The test was also repeated for 170 Sizing.

Resistance (in ohms) of Thermocouple Constructions

Time (minutes)	222 Sizing	170 Sizing
0.5	20,000,000	120,000
1.0	10,000,000	20,000
1.5	5,000,000	5,000
2.0	4,000,000	300
3.0	3,000,000	60
10.0	2,500,000	9.5

After the testing the 222 sized thermocouple remained unchanged in appearance with a high

insulation resistance between the two wires. The thermocouple with the 170 sizing showed evidence of a carbon char which provided a conductive path through the insulation between the two wires and produced a short circuit (9.5 ohms).

Yarn strengths of 222 sized material are comparable to our standard organic sized yarn strength. Braids of 222 sized material tend to be somewhat fuzzier than braids sized with our standard organic material.

Radiation Resistance & Microwave Measurement

3MTM NextelTM Ceramic Fibers 312 and 440

Radiation Resistance

Exposure to radiation from a Cobalt 60 source did no noticeable damage to the 3M Nextel Fibers 312 and 440. A total of 1×10^7 rads at an exposure rate of 2.1×10^5 rads/hour did not change the tensile strength of the fibers, yarns or fabrics made from the fibers.

Microwave Measurements

Power Transmission and Reflection for 3M Nextel Fabric panels 18 inch x 18 inch (45.7 cm x 45.7 cm) at 10 GHz.

Fabric	Transmission*		Reflec	tion**
Specimen				
	5	10	5	10
	Layers	Layers	Layers	Layers
AF-30	96.5%	97.8%	7%	0.45%
BF-30	94.7%	96.7%	7%	0.14%

^{*}Sample held with styrofoam panels, angles of incidence 0°.

^{**}Sample uncompressed, angle of incidence 10°. Compared to copper plate with perpendicular polarization.

Cryogenic Testing

3M™ Nextel™ Woven Tape 312 and 440

Five samples of 3M Nextel Woven Tape 312 and 440 1 inch (2,54 cm) wide were cut to 6 inch (15,2 cm) lengths for testing in liquid nitrogen.

Samples were heat cleaned at 1472°F (800°C) for one hour to remove the sizing before testing.

Samples were placed in liquid nitrogen to soak for three minutes. Samples were then removed and tested for strength retention.

A second set of five samples was dipped into liquid nitrogen ten times and then tested for strength retention.

	Retained Strength				
Sample	Soaked 3	Dipped 10			
_	Minutes	Times in N ₂			
	in N ₂				
3M Nextel	127%	81%			
Tape 312					
3M Nextel	98%	89%			
Tape 440					

Thermal Optical Properties*

The optical properties of fibers on the exterior of the space craft controls the amount of solar heating that will occur in orbit. For instance, a low absorptivity would be desired if one were designing components for a spacecraft mission. This would reflect most of the sun's energy and protect the craft and the instruments from high temperatures.

Optical measurements were made on $3M^{TM}$ NextelTM Woven Fabrics 312 and 440 using a Gler Dunkle DB-100 Emissometer and MS-251 Solar Reflectometer machines. The average absorptance (α) and emittance (ϵ) are as follows:

Material	Absorptivity	Emissivity
	(α)	(8)
312	0.14	0.88
440	0.15	0.87

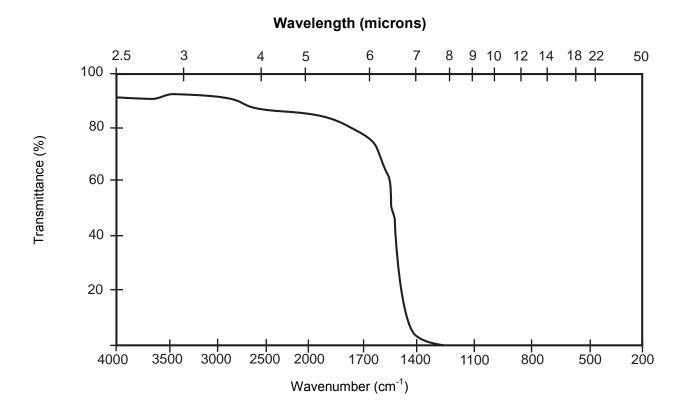
NASA Nonmetallic Material Testing*

Flammability, Toxicity and Thermal Vacuum Stability testing on 3M Nextel Woven Fabrics was performed using procedures specified in NHB 8060.1B and SP-R-0022A.

<u>Flammability</u>: Passed test in 30% oxygen and 10 psia environment.

Toxicity: Passed Test.

Thermal Vacuum Stability: Heat cleaned fabric passed test. Sized 3M Nextel Fabric outgassed volatile condensable materials of 0.15%, which exceeded the required limit of 0.1 weight %.

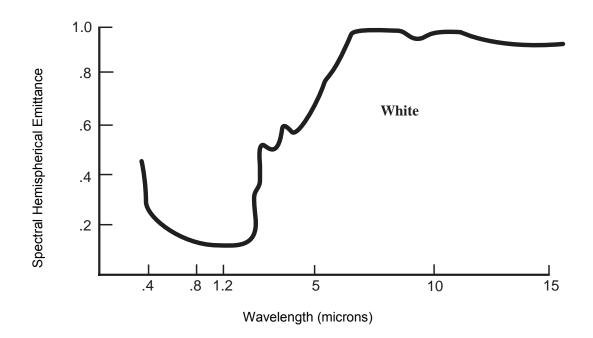

*Courtesy-NASA

IR Absorbance and Transmittance

3M[™] Nextel[™] Ceramic Fiber 312

A small flake of alumina-boria-silica (3:1:2) fired to $1742^{\circ}F$ (950°C) was used to determine the transmittance and absorbance of 3M Nextel Ceramic Fiber 312 in the infrared region. The thickness of the flake was determined from the interference pattern to be 22.4 μ m thick. The following graph shows that in the shortwave number region (4000-3000 cm⁻¹) the transmission loss is small and appears essentially due to reflection.

Weak absorption shows between 2700 and 1700 cm⁻¹. Beyond 1700 cm⁻¹ absorption becomes strong and finally complete beyond 1400 cm⁻¹. Absorbance can be calculated from the relationship $A=\log_{10}{(100)/(\%T)}$.



Spectral Hemispherical Emittance

3MTM NextelTM Woven Fabric 312

The emissivity of individual filaments of 3M Nextel Ceramic Fiber 312 could not be determined. However, the fibers in yarn form were woven into an eight ounce/square yard plain weave fabric. A fabric made from standard 3M Nextel Ceramic Fiber 312 was tested. The following data was obtained at

room temperature using a Beckman DK1A and Willie Reflectometers covering wavelengths between 0.3 μ and 15 μ . The emittance of other fabrics made from 3M Nextel Ceramic Fibers 312 may vary due to differences in weave pattern and yarn construction.

Heat Cleaning Instructions

Nextel[™] Ceramic Textiles 312, 440, 550, 610, and 720

Heat Cleaning

Heat cleaning is used to remove all of the organic coatings from the surface of the Nextel Fibers. This is important in applications where fabrics are going to be prepregged with resin for polymer composite applications. Heat cleaning is also used when Nextel materials are coated with silicone rubber since sizing will inhibit the cure of the silicone. Heat cleaning is recommended when Nextel Ceramic Fabric is to be used as electrical insulation, (thermocouples, heaters, etc.), under reducing atmosphere or vacuum conditions. Under these conditions the sizing decomposes to a conductive carbon and may cause electrical shorts. Fabricating cutting and sewing of Nextel parts is best done with the sizing left on the fabrics. The final parts can then be heat cleaned, if desired, with a simple heat cleaning cycle.

Heat cleaning Nextel Ceramic Fibers 312, 440, 550, 610 & 720 to remove the polymeric sizing and finishes generates thermal decomposition products which can be hazardous if inhaled at concentrations exceeding their recommended exposure limits. Carbon monoxide is the predominant decomposition product. By controlling carbon monoxide concentrations to the ACGIH Threshold Limit Value of 25 ppm (8 hr TWA), other decomposition products should also be adequately controlled. Control of carbon monoxide levels may be most effectively achieved through the use of exhaust ventilation such as an exhaust enclosure or hood.

Equipment Needed

1. Ventilated furnace or furnace equipped with an exhaust hood. For example, a quantity of fabric 10 yards x 36 inches (9,2 m x 0.92 m)

could be heat cleaned in a ventilated furnace capable of maintaining 1292°F (700°C) and equipped with an exhaust hood operating at 150 cubic feet (4,17 cubic meters) per minute capture velocity and not subject to disturbances by cross drafts.

2. Temperature measuring device, fitted with Type K thermocouple.

Procedure

- 1. Remove combustible packaging materials.
- 2. Place monitoring thermocouple in an area likely to require the longest time for heat penetration. Place bulk textiles in room temperature furnace and apply heat.
- 3. Follow the time/temperature chart on this page. Exceeding the recommended heating rate may cause the heat cleaning temperature to increase above the recommended maximum due to exothermic decomposition of the organic sizing. The maximum recommended rate of temperature increase for heat cleaning bulk textiles is 540°F (300°C) per hour. The baking time starts once the thermocouple reaches temperature.
- 4. Pigmented product will lose its color and appear white when sizing has been removed. Process should be repeated or extended until product is completely white.
- 5. Turn off furnace and let material and furnace cool to room temperature before handling.

	Heat Cleaning			
Nextel	Thermocouple	Time		
Textiles	Temperature			
Large Roll Fabric	1292°F ±27	12 hours		
	700°C ±15			
Small Samples	1292°F ±27	5 minutes		
	700°C ±15			

Heat Treating Instructions

Nextel™ Ceramic Textiles 312

Heat Treating

Heat treating, which changes the crystal structure of the fiber, is a higher temperature process than heat cleaning. This treatment improves the chemical resistance, anneals the stress from the fiber, and increases the modulus or stiffness of the fiber. This is used when the product is going to be used in hot wet environments or in areas where other chemicals are present. It is also used to reduce the stress of the fiber and minimize the unraveling in the cut ends of braided sleeving or fabrics.

Carbon monoxide is the predominant decomposition product. By controlling carbon monoxide concentrations to the ACGIH Threshold Limit Value of 25 ppm (8 hr TWA), other decomposition products should also be adequately controlled. Control of carbon monoxide levels may be most effectively achieved through the use of exhaust ventilation such as an exhaust enclosure or hood.

Equipment Needed

- 1. Furnace capable of maintaining 1652°F (900°C). Furnace may be the same one used to heat clean the fabric or it may be a second furnace which would not require ventilation if the fabric had already been heat cleaned.
- 2. Temperature measuring device, fitted with Type K thermocouple.

Procedure

- 1. Remove combustible packaging materials.
- 2. Place monitoring thermocouple in an area likely to require the longest time for heat penetration. Place bulk textiles in room temperature furnace and apply heat.
- 3. Follow the time/temperature chart on this page. Exceeding the recommended heating rate may cause the heat treating temperature to increase above the recommended maximum due to exothermic decomposition of the organic sizing. The maximum recommended rate of temperature increase for heat treating bulk textiles is 540°F (300°C) per hour. The baking time starts once the thermocouple reaches temperature.
- 4. Pigmented product will lose its color and appear white when sizing has been removed. Process should be repeated or extended until product is completely white.
- 5. Turn off furnace and let material and furnace cool to room temperature before handling.

	Heat Treating		
Nextel Ceramic	Thermocouple	Time	
Textiles 312	Temperature		
Large Roll Fabric	1652°F ±27	12 hours	
	900°C ±15		
Small Samples	1652°F ±27	4 hours	
	900°C ±15		

Important Notice to Purchaser

3M MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILIYT OF FITNESS FOR A PARTICULAR PURPOSE. All statements, technical information and recommendations contained in this brochure are based upon tests conducted with 3M approved equipment and are believed to be reliable. However, many factors beyond the control of 3M can affect the use and performance of 3M Ceramic Fibers in a particular application, including the conditions under which the product is used. Since these factors are uniquely within the user's knowledge and control, it is essential the user evaluate the 3M Ceramic Fibers to determine whether this product is fit for the particular purpose and suitable for the user's application.

Throughout this notebook we have used data based on typical properties of the products. If you need to develop a specification, please consult a 3M Representative. Application data has been collected from a variety of sources and may be of use for special applications.

LIMITATION OF REMEDIES AND LIABILITY: If the 3M product is proven to be defective THE EXCLUSIVE REMEDY, AT 3M's OPTION, SHALL BE TO REFUND THE PURCHASE PRICE OF OR REPLACE THE DEFECTIVE 3M PRODUCT. 3M shall not otherwise be liable for any injury, losses or damages, whether direct, indirect, special, incidental, or consequential, regardless of the legal theory asserted, including tort, contract, negligence, warranty or strict liability.

For more information contact:

In the US:

3M Ceramic Textiles and Composites

3M Center, Building 0223-06-S-04 St. Paul, MN 55144-1000

Toll Free within the USA: (877) 992-7749 From outside the USA: (651) 737-5102

FAX: (888) 993-9185

www.3M.com/ceramics

In Canada:

3M Canada 300 Tartan Drive London, Ontario, Canada N5V 4M9

(800) 265-1840 Ext. 2803 FAX: (519) 452-6286

In Europe:

3M Deutschland GmbH Ceramic Textiles & Composites, Europe Carl-Shurz-Str. 1 41453 Neuss, Germany

49-2131-142911 FAX: 49-2131-143898 In Japan:

H. Morimoto Sumitomo 3M Ltd. 33-1, Tamagawadai 2-chome Setagaya-ku, Tokyo 158-8583 Japan

03-3709-8436

FAX: 03-3709-8765